Last week I heard a great podcast news report about the way we talk about scientists and how that can inspire (or intimidate) those in the next generation and affect their desire to become scientists. In the US, we tend to talk about scientists as being geniuses, as having brilliant ideas and doing groundbreaking work that’s changed the course of our lives. But apparently that’s not a good way to motivate children to pursue science as a career path. Talking about scientists like they are super-human geniuses causes children to believe that since they aren’t geniuses, they’re not cut out for science. This is in contrast to how the stories of scientists are told in China, where the focus is on hard work. The podcast also describes a study in which kids were told stories about scientists in the context of being geniuses, in the context of personal struggle/hard work, and even in the context of having to ask colleagues for help when they were stuck. The kids who were told the ‘struggle’ stories were not only more engaged with science activities in the classroom, they even performed better on science tests.
The results of this study fascinated me throughout the week. Just by talking differently about scientists, about ourselves, we can motivate students not only to become more interested in science, but even to do better in exams. By relating how great scientists also faced challenges and persevered, children recognize the need for hard-work and determination and won’t give up if they find they are not as brilliant as Einstein. This study also got me thinking about stories as a whole. Science communication is essentially about telling a story with impact, to motivate and inspire…but as scientists, are we equipped to be able to tell these types of stories? As an undergraduate in Environmental Studies, my formal training in writing was, well, very formal. We had a specialized course for students in the biological sciences, and if you were going to be an engineer or a banker you were in a different technical writing class. While these courses were clearly designed as an introduction to what writing would look like for the jobs we would end up in, I wonder in hindsight if this is the wrong way to go about a formalized training in how to write. Yes, as scientists we need to know how to talk about p-values, how to structure a manuscript, and how to write an abstract, but this type of knowledge seems to come as easily through practice as it does through formal, classroom-based training. What is more of a challenge is for us to figure out how to talk to people outside of science, given that we spend so much of our time since undergrad learning how to talk with ourselves. Could this be the block between science and the public: simply an issue of not knowing how to tell a story in the classic way because we’re only trained to talk to ourselves? In contrast to being trained as a scientist, if you did your undergraduate in marketing you’d be thoroughly trained in how to tell a story, in this sense with the goal of leaving a lasting impression on someone, an impression so strong that they might even be biased towards buying the product or service you’re selling. One way that marketers do this is by using stories, and marketers do this for a reason: stories are a means to connect with emotions, and if you connect with the emotions of a person, you can create a more memorable connection. Whether it’s an ad about a horse and a dog who are best friends or a simple ‘We lived’ following a close-up of car crash wreckage, the ads with memorable content are the ones that impact our buying decisions, which are usually driven by emotion instead of logic. Another example of the impact of stories can be found in (name of teacher’s) marketing classroom. She asked each student to make a one-minute pitch for an imaginary product. Nine out of ten students presented facts and figures to make their case, but one student told a story about the product. When the audience was asked to remember things from the ten pitches, 5% could recall a specific figure or statistic, but 63% of them remembered the story. When someone tells you a story, they are also directing your brain’s activity. If you read or listen to a story of someone running or jumping, versus just being read a list of words with no context, your brain visualizes the actions, and activates the same ‘motor planning’ brain regions that are used when you get ready to do a physical activity yourself. In comparison, the words in isolation or outside the context of a story simply activate the language processing center of a brain. Think for a moment about reading a scientific paper versus an action-adventure novel: in the novel you can empathize and represent the activity, but can you do the same thing when all you have are facts, figures, and abstract concepts? So what do these examples from marketing and psychology mean for scientists? Early on in our careers, we’re trained to write very technically, to sound like a scientist, to talk about our work in the context of figures, error bars, statistical significance, and developing logical conclusions that fall within the bounds of our results. This is how science works: we’re presented with a hypothesis, we address that hypothesis with experiments, and we come to a conclusion about the state of the universe from those results. But at the same time, we are also human beings, as are our colleagues, our collaborators, and all the members of the public that fund our research in one way or another. Our brains are hard-wired to understand and be moved by stories, and while we’re trained to trust statistics and plots, we can still be swayed by the powerful emotions of empathy, joy, sadness, and fear. But we can’t just tell scientists to go out there and tell stories, because science stories are not the same as the ones from marketing, literature, or art. Our stories aren’t here to entertain or to entertain or to sell a product, but are rather a means of working towards an understanding of how life, the universe, and everything in between works. It’s unfair to trivialize our hard-work using the foundations of the scientific method using sensationalism and fear-mongering, but it doesn’t mean that scientists can’t be storytellers, too. In previous posts we’ve touched a bit on methods and approaches for writing and how you can frame your manuscript as a problem and solution approach. In the context of storytelling, you can think of your research as something akin to a mystery novel: you present some ‘case’ that needs to be solved, you describe your method for cracking the case, and present to the reader your conclusions as to who-done-it. Other options include presenting your science story with some relevant background (i.e. why the research happened) followed by the consequences of your work (why it matters). These approaches have also been formally adopted in materials developed for schools, with the aims of telling stories about scientists as a way to motivate and inspire them to get involved in science. A quote from one of this article: “Scientific storytelling, as it relates to teaching and education, should engage the audience and help them ask questions about the science: Why did this happen? What would we do next? How is this possible?" So while there is some dialogue about how to tell these stories, especially for educators, how can we as scientists, more fully embrace the power of storytelling in our own work? Interestingly enough, if you search for ‘how to tell a story’ versus ‘how to write a scientific manuscript’, you’ll come up with very different results. This one from Forbes is a simple list of to do’s that also echoes what we’ve touched on in our Five Easy* Steps presentation posts. In contrast, the ‘scientific manuscript’ guidelines are more guidelines for structure and less for impact, for example in what order to write the introduction versus the materials and methods. These are helpful guidelines in the context of the science side, but what about the storytelling side? How can we connect storytelling to science? While there are a few websites with some pointers on how to tell stories, here are a few other considerations to keep in mind: Don’t tell people something is important: make them believe it. Instead of telling your reader that your research is great and then give them a list of reasons why, describe for them the world in which your research sits. Paint the picture of what your field looks like and how your research fits into it. People, scientists included, will not instantly respond to being told that something is important, we need to realize for ourselves that it’s important and develop some connection to the problem. Hook your readers in with a story about what your world (of research) looks like. What are the mysteries still unsolved? What have people worked to figure out but in vain have yet to find an answer to? What will happen if nothing gets done? This isn’t about telling lies to make your work seem more important, or in foregoing facts for sensationalism, but focuses on presenting why people should care instead of just telling them to do so. If people remember one thing, what should it be? Regardless of whether it’s a manuscript, a blog post, an email, or an oral presentation, people will forget things. Details will get lost in the numerous other details you present, they might lose attention, or you might just be giving them too much information at once. Think of what your big-picture take-home message is, and make sure that gets across. Put it in your abstract, at the end of your introduction, at the beginning of your discussion, and at the end of your conclusion. Tell your readers again and again what you want them to remember, and you’ll ensure that portion at least sticks with them. Write what you want to read. As scientists we’ve been trained to write in a certain way-but that style is primarily focused on structure, not content. These are the sections you should include, these are how you transition from introduction to methods, etc. The structure is important and should be kept, but it’s not the only tool we can use as writers. Use the advice from writers and from advertisers in terms of crafting the story and the vocabulary you use. As long as the science is there, using approaches from other fields is a valid way of setting up your paragraphs and structuring your sentences. If you don’t like reading papers that drone on about ‘therefore, XYZ’ and ‘henceforth, ABC’, then don’t write those papers. Say what you found, what it means, and why it’s important in the context of your story, and be simple and clear about how you got to the conclusion you did. Read stories by good writers. We’ve already touched on this recommendation in other posts, and there’s a reason we mention it again. We generate a lot of our vocabulary and the way we talk from the people around us. If you spend time with someone that says ‘like’ or ‘totally’ a lot, you’ll totally, like, pick up on it, too. The same goes for writing: if you read what good writers write, it helps you do the same. You pick up on examples of how to transition between ideas, what words or phrases are memorable, and what analogies are helpful for conveying a message. While there are examples of good writing in the scientific literature, take a break from science reading and explore some blogs, news articles, or books whose focus is a story in order to get some insights into how to tell your own. Write something other than science. It’s hard to put into practice narrative or story-based writing if you keep writing using the same structure you’ve done before already. Try expanding your writing repertoire by penning a creative short story or a news article instead. See how it feels to write something when logic isn’t at the forefront. How do you convey a complex topic? How do you transition between complex ideas? Practice how you can connect words and ideas which aren’t driven by science and then take those lessons into your own science writing efforts. Thankfully, we have a lot of great science storytellers to learn from. If you want to get inspired, be sure to check out the works of Carl Sagan and Steven Johnson. In the next couple of weeks we’ll be doing a book review on Modern Poisons, a lay person’s guide to toxicology, with some insights on how to write a science book for a non-scientific audience from the author (and my former undergrad honors thesis advisor) Alan Kolok. And they communicated their science happily ever after. THE END Comments are closed.
|
Archives
August 2018
Categories
All
|