I have a bad habit of overextending myself. It’s a habit that rears its head in many ways, from reading days where I end up printing more interesting papers than I actually read or opening tabs from Wikipedia that expand through the complete realm of time and space. To ensure that I had more than enough to do this autumn, I enrolled in an online journalism course available on Coursera. The six week course satisfied my goal of learning something new about a field that I’ve become more interested in lately, a chance to explore the underlying methods and philosophies behind something that people interact with everyday. Modern journalism has seen some controversy lately, especially in the wake of recent events leading up to Brexit and the US Presidential election.
This week has seen a lot of fall-out about the US election results. Everything from criticizing Facebook for not sifting out the false news from the real or creating a world of biased newsfeeds, as well as the endless spins on candidate statements or poll results that you could possibly imagine. But we don’t just see this in political news, and science is not immune to the shifting tides of news and the media. Take dietary guidelines, for example: Eggs were at one pointed considered unhealthy, but now they’re good for us. A beer a day can apparently prevent stroke and heart disease but low to moderate amounts of alcohol consumption causes several types of cancer. And who even knows what red wine is really doing. As scientists we can easily evaluate and even criticize the bad science that goes viral or the poor reporting of a new research paper. But as a journalist, would you have the same level of discernment when readying a story for rapid publication? What can scientists learn from journalism in terms of making our stories clear accurate yet also gripping and impactful in a news-worthy way? This week we’ll be introducing some basic concepts of journalism to give you a break from your paper writing during #AcWriMo. Next week we’ll talk about interviews and storytelling, and in the final week of November we’ll discuss how you can become an engaged citizen science journalist on your own. But first, the basics: what is journalism and who are journalists?* *Note: This information is a summary of the excellent online course, “Journalism skills for engaged citizens”, by the University of Melborne. This course was really great, so be sure to check out Coursera and keep an eye out for the next session if you’re interested! Journalism and journalists have a primary obligation to the truth. Good journalism is not marketing and it’s not personal opinion: it should be the most accurate depiction of a story based on the journalist’s understanding of the facts. In this sense, journalistic truth is the process of assembling and verifying facts, namely the facts which provide the most accurate depiction of truth at the time that the article is written. Sound familiar? In principal, the foundations of science and of journalism are more similar than not. The scientific method is also objective and one which uses experiments and hypotheses to come to an answer about how the world works, given the knowledge that we have at this stage in time. Ideas and theories change when we get new data, just as a story evolves when new angles or facts come in. Another important similarity to remember is that while the methods of both journalism and science are objective, journalists and scientists are not--we are all humans and make mistakes or can be biased to seeing things in a particular way. That being said, both fields also have guidelines and support for ensuring that objectivity and truth is the focus of the story or the research. Journalism is storytelling with purpose. A news story must be interesting and relevant to an audience, which is also one reason why stories can become over-sensationalized or hyperbolized. While the audience is the one who decides if a story is relevant or exciting for them, it’s the role of the journalist to both find a story that will attract audience interest and to tell that story in a way that’s accurate. News is fundamentally something that people don’t know already and will also find interesting. News-worthy stories generally have a number of key ‘values’. The primary values include magnitude (the number affected/size of the event), negativity (bad news, conflict, or disruption tend to feel more news-worthy than good stories), and proximity (if the affected group is local or has some cultural/emotional empathy or connection). Secondary values include recency, prominence of the parties involved, stories that discuss emotion or the human condition (known as pathos), shock/surprise of the story, clarity (simple > complex), and the ability of the story to challenge what is already known. Sound familiar? Probably not as much as the first point. In science, we tell our stories very objectively, much in how we also find out the story in the first place. When we write a manuscript we aren’t trying to over-sell our story or convince our audience of the newsworthy-ness of our article. We let the data speak for itself, in part because we are talking to other scientists and in part because that’s how science is typically done. Scientists tend to think that their own problems are interesting simply because they are interesting—we are engrossed with our projects and our data, with many of us believing that the publication in of itself is sufficient to gain further interest without the need for further reporting or promotion. Science communication efforts are focused on bridging this gap between science and the public in part by sharing science in forums beyond research journals and conferences. But scientists and science communicators also need to recognize that science communication is more than just telling the stories: if the work doesn’t feel close, relevant, big, or clear, it won’t resonate with an audience. People may never care about our work if it doesn’t connect to them in some convincing way. Journalists put the biggest ideas first. Scientists and journalists present ideas very differently, which can explain in part why some stories seem to over-hype the results of research studies. In a research article, the long-term goals or broader impacts may make an appearance as a bit of text in an abstract or a discussion, and these may only have a secondary application in the overall findings of the paper. For example, a paper on the genetic regulations of prostate cancer might mention curing cancer as one of the aims of the research, but no cancer will be directly cured from the findings of the paper itself. An article popped up on my newsfeed several weeks about with an alarming headline connecting environmental pollutants in car exhaust to Alzheimer’s. While the paper does demonstrate a correlation between magnetite levels (evaluated in the brains of patients from urban areas in Mexico and Manchester, UK) with incidence of Alzheimer’s, the results were still only correlative, and with no non-urban control samples to compare these findings against. The headline wasn’t a complete stretch, but also wasn’t exactly what the paper showed: you didn’t hear about the limitations of the article until you dug further into the text, after the important journalistic point of the connection between environmental nanoparticles and brain diseases. A scientist may put out a press release on findings from a research paper which from their perspective accurately separates the “big picture maybe” from the details and the facts presented in the paper itself. But a journalist might catch on to the big picture maybe as the most important part of the story—the one that will connect to readers more than the detailed methods and the relevance of the error bars. In this sense, understanding how stories are structured from a journalists’ perspective can help scientist understand that reporting casualties can arise not from fear-mongering or bad intentions but simply from looking at the parts of a paper or a press release and interpreting a big picture/long-term maybe as an immediate truth. In our last post of this series we’ll go into detail about news story structure and how to take this into account when working to become a better science communicator. Journalism stands up to the principle that people have a right to information. In addition to the duty of truth telling, journalists also have their primary loyalty in informing citizens while “describing society to itself”. Journalists, editors, and news organizations undoubtedly have their own perspectives and bias, but they are also held accountable to their duty towards the public. Here we can envision a parallel between scientists and journalists: even in our own careers and interests, scientists have a duty to do good science and to ensure that work done with tax-payer dollars is of high-quality and open to scrutiny by others. But there are also some striking differences in this regard. While science is becoming more open, there is still a tendency to keep data and information within a research community and to focus on the peers who judge our work and its quality instead of members the public. Good journalism is meant to provide a map that enables people to navigate society on their own, when provided with the truth and the facts in a clear and accurate way. Does good science do the same? Do scientists actively help the world reflect on where it came from, what it is, and where it’s going next? As scientists working in one of the most well-connected eras in terms of communication opportunities, we have a chance to make an even bigger impact than simply publishing research papers. But we’re up against a flurry of news, stories, and sensationalism, and it’s a time where folks in different fields are better off working together than pointing fingers at one another. Scientists can learn a lot from the approaches used by journalists in order to better connect and resonate with a broader audience. Next week we’ll talk about interviewing/fact-finding and will follow up the last week with some tips that will enable you to start telling impactful and accurate stories about science and the world around us. Comments are closed.
|
Archives
August 2018
Categories
All
|